2 干涉消除方式
1. 旋转刀轴方式
在一个刀位点处,曲面特征点于刀具系发生干涉的有m个,综合考虑m个干涉点的干涉情况,可找到一个消除干涉的最佳方向,以便最有效地消除刀具干涉。为此,引入了"干涉消除平面"的新概念,把m个干涉点处的曲面法矢量投影到刀具坐标系T的XTYT平面上,设干涉点处的曲面法矢量在XTYT平面上的投影为nxyi(i=1,2,…,m),干涉点在XTYT平面上的干涉分量为 t(i=1,2,…,m)。如图4所示,则干涉消除矢量I可由下式求出
(4)
由式(4)求出干涉消除矢量I(Sx,Sy,Sz)之后,再由干涉消除矢量I 和ZT轴构成干涉消除平面。设由轴ZT和消除矢量I的叉乘矢量为K,在平行于"干涉消除平面"的平面上计算刀具绕K 轴向I倾斜多大的干涉消除角度 能刚好消除刀具干涉,如图5所示。设将干涉点Pi(i=1,2,…,m)排除在刀具系表面之外所需要的最小角度为 i(i=1,2,…,m),则干涉消除角度 是所有角度 i的最大值
(5)

图4 干涉消除矢量I

图5 环形刀加工时消除角度(干涉消除平面2D 图)
要把干涉点Pi排除在刀具系之外,干涉点Pi固定不动,刀具系绕K 轴向I方向旋转,等价于干涉点Pi相对于刀具系和刀具坐标系在平行干涉消除平面IOTZT的平面内转动 i角度,下面以环形刀为例加以分析。
如图5 所示,环形刀加工时刀具系的旋转轴经过消除平面IOTZT与刀具圆环面的交圆弧中心点O1,并平行于矢量K,过干涉点Pi,平行于消除平面IOTZT作一截平面,截平面与刀具圆环面的交线为4次曲线,与圆柱面的交线为两直线。环形刀的刀轴旋转分两种情况,当干涉点Pi落入环形刀圆柱体内,旋转角度 i为∠PiOPi‘(图5a),计算公式为
(6)
而角度1计算如下
(7)
当
时,点Pi在旋转过程中与圆柱表面截线相交, 2的计算公式为
(8)
当点Pi在旋转过程中不与圆柱截线相交时,则点Pi‘可能与圆环截面4次曲线或刀具底平面截线相交。与圆环截面4次曲线相交时,角度 2的计算较复杂,为了简化计算,对旋转角度作保守处理。这时,计算出的角度 2要比实际角度大,但对于刀具干涉处理没有影响。保守处理点Pi‘均旋转到与刀具底平面相交,这时角度 2等于
(9)
如图5(b)所示,当干涉点Pi落入环形刀圆环体内,同样对旋转角度作保守处理,点Pi‘均旋转到与刀具底平面相交,旋转角度 i为∠PiOPi‘,计算公式同式(6),其中角度 1和 2的计算如下
(10)
(11)
当式(11)中的分母小于分子时,点Pi‘在旋转过程中不能与刀具底平面相交,这时不能通过旋转刀轴方式来消除干涉,但这种情况可能性极小。
同理可处理动力头圆柱体内的干涉点。
虽然刀具系可通过向I方向旋转 角度来消除干涉点,但刀具系在旋转过程中有可能再与其他曲面特征点发生干涉。因此刀具系旋转后,必须计算新的刀轴矢量,并重新建立新的刀具坐标系,再进行与曲面的干涉检查。当干涉现象不能通过旋转刀轴方式消除时,则采用沿刀轴方向的抬刀方式来消除。
2. 抬刀方式
采用沿刀轴方向抬刀方式消除干涉时,应计算沿ZT方向的抬刀量。对于m个干涉点Pi(i=1,2,…,m),计算每个干涉点排除的抬刀量 zi(i=1,2,…,m),并同样取其中最大量为刀具抬刀量 z。
如图6 所示,为环形刀加工时抬刀量的计算,有两种情况。当干涉点Pi落入半径为(R-R1)的刀具圆柱体S1内时,刀具向上抬刀,干涉点最后与刀具底平面相交,其抬刀量计算为
(12)
当干涉点Pi落于半径差为R1的圆环体S2内时,抬刀时干涉点与刀刃圆弧面相交,其抬刀量为
(13)

图6 干涉消除的抬刀量计算